姓名: |
孫楊 |
性别: |
男 |
|
職稱: |
副教授 |
學位: |
博士 |
|
電話: |
17600690258 |
傳真: |
|
|
Email: |
sunyang@yangtzeu.edu.cn |
郵編: |
430100 |
|
地址: |
湖北省武漢市蔡甸區蔡甸街大學路111号 |
|
|

|
更多信息: |
永利6774app手机版官网 永利6774app手机版官网石油系 |
簡曆:
孫楊,男,博士,現任永利6774app手机版官网特任教授,碩士生導師。2017年5月至2021年1月在台北中央研究院地球科學研究所從事博士後研究工作。2021年3月至2024年9月在南方科技大學地球與空間科學系擔任研究助理教授。主要研究内容聚焦于非傳統穩定同位素的分餾機制及其在石油地質學、岩漿成礦作用與幔源岩漿過程中的應用。目前的研究重點為利用非傳統穩定同位素示蹤技術,優化對白雲岩儲層發育及分布的預測模型,從而提升儲層評價的精度與可靠性。主持深地國家科技重大專項課題1項,國家自然科學基金2項,中國博士後面上項目1項,參與國家自然科學基金、深圳市科創委穩定支持重點項目多項。目前以第一作者身份發表論文9篇,其中Nature Index期刊2篇(Geochimica et Cosmochimica Acta, Journal of Geophysical Research: Solid Earth),其他國際權威SCI期刊7篇(Ore Geology Reviews, Lithos, Chemical Geology, Contributions to Mineralogy and Petrology);合作論文14篇,包括Journal of Petrology, Chemical Geology, Journal of Geophysical Research: Solid Earth, Geochimica et Cosmochimica Acta, Lithos, Earth and Planetary Science Letters, Rapid Communications in Mass Spectrometry等國際權威SCI期刊。
工作及教育經曆:
2007年9月–2011年7月,合肥工業大學資源與環境工程學院,資源勘查工程專業,學士學位;
2015年9月–2016年9月,華盛頓大學(西雅圖),同位素地球化學專業,聯合培養博士,導師:滕方振教授;
2011年9月–2017年1月,中國科學院地質與地球物理研究所,礦物學、岩石學、礦床學專業,博士學位,導師:英基豐研究員;
2017年5月–2021年1月,台北中央研究院地球科學研究所,博士後,合作導師:鐘孫霖研究員;
2021年3月–2024年9月,南方科技大學地球與空間科學系,研究助理教授;
2024年9月–2024年12月,永利6774app手机版官网,特任教授;
2024年12月–至今,永利6774app手机版官网,副教授。
學術兼職:
1. The Innovation Geoscience,中科院1區Top期刊,青年編委;
2. 礦物岩石地球化學通報,中文核心期刊,青年編委;
3. 成都理工大學學報(自然科學版),中文核心期刊,青年編委。
榮譽獎勵:
1. 2021年深圳市海外高層次人才“孔雀計劃”C類;
2. 2022年南方科技大學卓越博士後;
3. 2025年湖北省楚天英才計劃楚天學者。
近期承擔科研項目情況:
深地國家科技重大專項課題,SQ2025AAA060122,重點鹽盆關鍵成鹽期層序岩相古地理演化與聚鹽成鉀,2025–2029,350萬元,在研,主持;
國家自然科學基金委員會,面上項目,42473057,從超鉀質火山岩視角探讨富集地幔的成因,2025–2028,51萬元,在研,主持;
國家自然科學基金委員會,青年科學基金項目,41703031,大陸HIMU型玄武岩成因的Mg同位素制約,2018–2020,24萬元,結題,主持;
中國博士後面上科學基金,2017M620899,超鉀質火山岩成因的Mg同位素制約,2018–2020,5萬元,結題,主持。
論文:
1. Sun, Y., Chen, B., Li, W.-J., Liu, S.-J., 2024. Garnet as indicator of pegmatite evolution and mineralization: The case study of the Koktokay pegmatites, Altai, NW China. Geological Journal. https://doi.org/10.1002/gj.5110
2. Sun, Y., Chen, B., Li, W.-J., Liu, S.-J., 2024. Tourmaline geochemical and B isotopic constraints on pegmatite Li mineralization and exploration. Ore Geology Reviews, 106257.
3. Sun, Y., Teng, F.-Z., Rooney, T.O., Pang, K.-N., Wang, Z.-Z., 2024. Magnesium isotope behavior during titanomagnetite fractionation in basaltic lavas. Chemical Geology, 122088.
4. Sun, Y., Teng, F.-Z., Pang, K.-N., Ying, J.-F., Kuehner, S., 2021. Multistage mantle metasomatism deciphered by Mg−Sr−Nd−Pb isotopes in the Leucite Hills lamproites. Contributions to Mineralogy and Petrology 176, 45.
5. Sun, Y., Teng, F.-Z., Pang, K.-N., 2021. The presence of paleo-Pacific slab beneath northwest North China Craton hinted by low-δ26Mg basalts at Wulanhada. Lithos 386–387, 106009.
6. Sun, Y., Teng, F.-Z., Hu, Y., Chen, X.-Y., Pang, K.-N., 2020. Tracing subducted oceanic slabs in the mantle by using potassium isotopes. Geochimica et Cosmochimica Acta 278, 353–360.
7. Sun, Y., Teng, F.-Z., Ying, J.-F., Su, B.-X., Hu, Y., Fan, Q.-C., Zhou, X.-H., 2017. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. Journal of Geophysical Research: Solid Earth 122, 7562–7572.
8. Sun, Y., Ying, J.-F., Su, B.-X., Zhou, X.-H., Shao, J.-A., 2015. Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine. Chemical Geology 405, 10–18.
9. Sun, Y., Ying, J.-F., Zhou, X.-H., Shao, J.-A., Chu, Z.-Y., Su, B.-X., 2014. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: Implications for the role of ancient subducted sediments. Lithos 208–209, 53–66.
10. Liu, S.-J., Zhou, M.-F., Sun, Y., Li, W.-J., Chen, B., Zhao, G.-C., 2025. Contrasting Geochemistry of Apatite from Triassic Li-Mineralized and Barren Pegmatites in the Ke’eryin Field, Eastern Tibetan Plateau. Journal of Petrology. https://doi.org/10.1093/petrology/egae130
11. Li, W.-J., Chen, B., Chen, X.-D., Sun, Y., Liu, S.-J., 2025. Tourmaline geochemical and boron isotopic constraints on the magmatic-hydrothermal transition and Li mineralization in LCT-type pegmatites. Geological Society of America Bulletin. (Accepted)
12. Pang, K.-N., Sun, Y., Wang, Y., Chung, S.-L., Lee, H.-Y., 2024. Identification of intermediate-silicic cumulates in the Emeishan large igneous province, SW China. Lithos. https://doi.org/10.1016/j.lithos.2024.107932
13. Fazlnia, A., Pang, K.-N., Sun, Y., Lee, H.-Y., 2024. Geochemistry and origin of the Late Carboniferous ultramafic, mafic, and felsic plutonic rocks (NW Iran). Lithos 480–481, 107650.
14. Xiao, Y., Yuan, M., Su, B.-X., Chen, C., Bai, Y., Ke, S., Sun, Y., Robinson, P.T., 2023. The Chromite Crisis in the Evolution of Continental Magmas and the Initial High δ26Mg Reservoir. Journal of Petrology, 64(4).
15. Zheng, B.Q., Chen B., Sun Y., 2023. Tracing the evolution of the pegmatite system and its interaction with the country rocks by chemical and boron isotope compositions of tourmaline in the Qinghe pegmatite from the Chinese Altay orogen. Acta Petrologica Sinica 39, 187–204.
16. Liu, S., Chen, B., Zheng, J., Sun, Y., Bao, C., Zhao, G., 2022. Lithium isotopic behaviour during high-temperature fluid-rock reactions of metapelites (>200°C): A case study from the Baiyun orogenic gold deposit, Liaodong Peninsula, North China Craton. Chemical Geology 611, 121121.
17. Su, B.-X., Chen, C., Xiao, Y., Robinson, P.T., Liu, X., Wang, J., Uysal, I., Bai, Y., Sun, Y., 2021. The Critical Role of Fluid-Mediated Diffusion in Anomalous Fe-Mg-O Isotope Fractionations in Ultramafic Rocks of Ophiolites. Journal of Geophysical Research: Solid Earth 126, e2020JB020632.
18. Pang, K.-N., Teng, F.-Z., Sun, Y., Chung, S.-L., Zarrinkoub, M.H., 2020. Magnesium isotopic systematics of the Makran arc magmas, Iran: Implications for crust-mantle Mg isotopic balance. Geochimica et Cosmochimica Acta 278, 110–121.
19. Liu, Y.-D., Ying, J.-F., Li, J., Sun, Y., Teng, F.-Z., 2020. Diverse origins of pyroxenite xenoliths from Yangyuan, North China Craton: implications for the modification of lithosphere by magma underplating and melt-rock interactions. Lithos 372–373, 105680.
20. Su, B.-X., Hu, Y., Teng, F.-Z., Xiao, Y., Zhang, H.-F., Sun, Y., Bai, Y., Zhu, B., Zhou, X.-H., Ying, J.-F., 2019. Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism. Earth and Planetary Science Letters 522, 79–86.
21. Su, B.-X., Zhou, X.-H., Sun, Y., Ying, J.-F., Sakyi, P. A., 2017. Carbonatite-metasomatism signatures hidden in silicate-metasomatized mantle xenoliths from NE China. Geological Journal. DOI: 10.1002/gj.2920
22. Su, B.-X., Hu, Y., Teng, F.-Z., Xiao, Y., Zhou, X.-H., Sun, Y., Zhou, M.-F., Chang, S.-C., 2017. Magnesium isotope constraints on subduction contribution to Mesozoic and Cenozoic East Asian continental basalts. Chemical Geology 466, 116–122.
23. Hu, Y., Harrington, M.D., Sun, Y., Yang, Z., Konter, J., Teng, F.-Z., 2016. Magnesium isotopic homogeneity of San Carlos olivine: a potential standard for Mg isotopic analysis by multi-collector inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry 30, 2123–2132.